Initial-boundary Value Problems for Conservation Laws with Source Terms and the Degasperis-procesi Equation
نویسندگان
چکیده
We consider conservation laws with source terms in a bounded domain with Dirichlet boundary conditions. We first prove the existence of a strong trace at the boundary in order to provide a simple formulation of the entropy boundary condition. Equipped with this formulation, we go on to establish the well-posedness of entropy solutions to the initial-boundary value problem. The proof utilizes the kinetic formulation and the compensated compactness method. Finally, we make use of these results to demonstrate the well-posedness in a class of discontinuous solutions to the initial-boundary value problem for the Degasperis-Procesi shallow water equation, which is a third order nonlinear dispersive equation that can be rewritten in the form of a nonlinear conservation law with a nonlocal source term.
منابع مشابه
Liouville Correspondences between Integrable Hierarchies
In this paper, we study explicit correspondences between the integrable Novikov and Sawada–Kotera hierarchies, and between the Degasperis–Procesi and Kaup–Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada–Kotera equations, and the isospectral problems of the Degasperis–Procesi and Kaup–Kupershmidt equations relate...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملConservative finite difference schemes for the Degasperis-Procesi equation
We consider the numerical integration of the Degasperis–Procesi equation, which was recently introduced as a completely integrable shallow water equation. For the equation, we propose nonlinear and linear finite difference schemes that preserve two invariants associated with the bi-Hamiltonian form of the equation at a same time. We also prove the unique solvability of the schemes, and show som...
متن کاملGlobal Existence and Blow-up Phenomena for a Weakly Dissipative Degasperis-procesi Equation
This paper is concerned with the long time behaviour of a weakly dissipative Degasperis-Procesi equation. Our analysis discloses the co-existence of global in time solutions and finite time break down of strong solutions. Our blow-up criterion for the initial profile generalizes considerably results obtained earlier in [32].
متن کاملNumerical Schemes for Computing Discontinuous Solutions of the Degasperis-procesi Equation
Recent work [4] has shown that the Degasperis-Procesi equation is well-posed in the class of (discontinuous) entropy solutions. In the present paper we construct numerical schemes and prove that they converge to entropy solutions. Additionally, we provide several numerical examples accentuating that discontinuous (shock) solutions form independently of the smoothness of the initial data. Our fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008